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ABSTRACT 

Machinery health management is becoming increasingly important and the diagnosis of failures based 
on machinery condition has been analyzed in-depth in the last few decades, and is relatively well understood. 
However, prognostic evaluation of faults in a machine is a harder task that involves predicting impending faults 
in the system and determining remaining useful life of the machinery.  A survey of algorithms, and a detailed 
description of a hybrid CBM prognostic techniques being investigated for use in ground vehicle systems will be 
presented. The system incorporates a number of techniques to process and analyze the current condition of a 
ground vehicle, and to generate a prognosis for each subsystem in the vehicle. The discussion will describe a 
means of testing, verifying and iteratively improving prognostic capabilities throughout the lifecycle of the 
platform.  

 
 

INTRODUCTION 
Vehicles generally have some form of diagnostic 

indicators and the ability to perform diagnostic tests and 
sense the condition of the vehicle.  Producing a viable 
prediction from these condition indicators (CI) is the next 
step for vehicle and fleet integration.  Although Prognostics 
has been studied for a very long time in varied disciplines, 
its real-time use in ground vehicles is just starting.  It is 
generally accepted that an electronics-based means of 
prognostics that relies on computers will be the main form of 
the future vehicle prognostics system, but some other types 
of prognostics technologies will be discussed, and perhaps 
they could also play a part in the overall prognostics 
mechanisms.  The Condition Based Maintenance+ (CBM+) 
research serves as guidance into the overall operation and 
layout of the information system infrastructure.  Ideally, the 
prognostics sections to be employed will also form an open-
standards type of arrangement that will allow modules from 
different researchers and producers to be easily integrated in 
a system that produces a prognostic metric.  Defining the 
prognostic metric is the interesting thing, where it can be 
used and updated by many different organizations.  The 
Remaining Useful Life (RUL) metric or prognostic 

mechanism may be the result, with suitable modifications 
and additional surrounding technologies. 

 
PROGNOSTICS 

Correctly predicting the future is a profitable ability.  In 
the case of predicting the RUL of a vehicle component, it 
can lead to cost savings by waiting until maintenance is 
needed instead of performing maintenance actions on a set 
interval.  Correctly predicting RUL also can help prevent 
situations where the component stops working at the wrong 
time. 

 
History 
This subsection deals with the formal mathematical use of 

prognostics, since there have been so many other uses 
through the millennia.  Predicting the future seems to have 
always been a skill in demand.  The science of statistics 
provides a mathematical basis for predicting the future.  
Statistics are all that is really known about anything, so 
basing predictions on statistics must be a good start.  This is 
the basis behind the RUL form of prognostication: if you 
know how long a certain component statistically lasts in a 
given environment, then you can figure how much time it 
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has left to operate, given that you know how much time it 
has already operated. 

One form of non-data-based prognostication is the use of a 
canary [1].  A canary, also sometimes known as a fuse, is 
generally a piece of hardware that is meant to fail before the 
main system fails, thus providing an indication of what may 
be coming in the future.  It got its name from coal mining 
warning systems where they carried a canary bird into the 
mine with them, and if the canary died, then the miners 
knew that there were dangerous gases present, and they 
needed to leave immediately.  Canary has then become the 
word to describe this sort of early warning system.  Another 
form of canary could be considered to be the indicator that 
tire manufacturers sometimes put into their tires that shows 
when only a little tread life remains by providing a 
comparison plateau that is reached by the remaining tread as 
it wears.  If the tread height reaches the plateau, then it is 
nearly time to replace the tire.  Another form of canary is a 
deliberately-weakened electronic circuit on an integrated 
circuit chip.  If the circuit becomes inoperable, then it is an 
indication that the entire chip may soon become inoperable.  
Hopefully the canary gives enough time to attain a safe state. 

Canaries are effective and provide a definite physical 
indication that there is a problem and that time is running out 
for the health of the system.  Unfortunately they only give 
off one warning, and until the canary dies, there is ostensibly 
no indication that the system remaining useful life is just 
about running out.  A Prognostics Health Management 
(PHM) system can use canaries as long as they can be 
somehow connected into the PHM system.  A canary will 
allow all the mathematical predictions to be immediately 
reset to the ground truth of the system health status, and can 
carry on to predict RUL from there. 

Similar to a canary is a failure precursor, where an 
impending failure is predicted by conditions detected in a 
data stream or information about the system.  It may take the 
form of a metallic shell around a component glowing red 
hot, or a signal being sensed from a vibration transducer has 
become twice as powerful.   

More subtle shifts in operating condition of a machine can 
be sensed with technologies like Fuzzy Adaptive Resonance 
Technology (Fuzzy ART) Neural Networks [2].  For the 
case of a vibration signal, the frequency response is split into 
bins of an arbitrary resolution, and applied to the neural 
network, where a representative spectrum is learned for each 
of the various operating modes that are expected to be 
encountered.  After these have been learned, and then may 
have had been learned on the actual machine or vehicle of 
interest thus making them even more sensitive, the system is 
switched into monitor mode, and if it senses a deviation 
from the automatically-learned envelope of operating 
spectral characteristics, it will provide an indication 
therewith.  This technology has been expanded to work in a 

direct prognostics application, and for many different types 
of signals, not just vibration.  Either way, having a precursor 
is a great thing, and similar to a canary it allows the operator 
to take immediate action to safeguard the machinery.   

Another type of PHM technology that has attained a good 
level of use it that of remaining-useful-life estimation.  The 
simplest form of remaining useful life calculation is that 
such as is found on many automobiles for the RUL of the 
oil.  The system assumes that the oil needs to be changed 
every 3000 miles.  The car computer also has access to the 
distance that had been driven since the last oil change.   It 
can reason that if 2000 miles has already been driven since 
the last oil change, that therefore the oil needs to be changed 
in 1000 miles.  If I have not been really stressing the car, and 
it has already been broken in, then I might wait longer, or if I 
have been driving cross country or through a dusty 
environment, I might reason to change it sooner than the 
blind-reasoned car software decision has told me to.  Having 
such a drivertronic reasoner is a good improvement over the 
blind reasoner, and probably saves me money, or at least 
eases up on having to get the car in for an oil change the 
minute the indicator says that there are zero miles remaining 
before an oil change is needed.  The example systems that 
are described later in the paper illustrate things that can be 
done to improve the reasoning capabilities of the RUL-type 
reasoner by using some of the concepts of the failure 
precursor-type and the canary–type prognostication system. 

 
Statistics 
The medical and insurance industries rely heavily on the 

use of statistics for prognostication.  Extensive testing and 
studies are conducted to find the improvement rates from 
different diseases, given particular treatments.  Insurance 
agents work with actuarial tables to try to predict how long 
someone may live, in order to determine how much to 
charge them for insurance.  Both of these studies are 
completely statistical.  They are not focused on a particular 
individual.  For medical applications, a doctor could refer to 
these studies and probabilities, and suggest a course of 
treatment, or maintenance for the individual, knowing the 
individual’s particular circumstances.  That is what the new 
systems for embedding in vehicles will provide: a 
continuous doctor’s perception of the state of the entire 
vehicle, at least for the parts that are sensorized.  Of course 
the doctronics needs to have familiarity with the various 
fields and components, and these components are provided 
by human experts, and integrated in, perhaps licensed in, for 
online use.   

To know what a baseline system is expected to perform 
like requires statistics.  Many vehicles need to be studied, 
with test equipment that measures the performance 
characteristics, and determines the expected actuarial tables, 
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or predicted lifespan, of each of the pieces of equipment 
being monitored. 

A common approach to learning the baseline of a system is 
to apply Bayesian Learning techniques to learn the 
probability of failure of the life of the system.  If the 
engineering information indicates a causality situation, such 
as when the wheel hub degrades, it increases the probability 
of the axle failing. A Bayesian Network can be created to 
fuse the engineering data with the historical data to increase 
the accuracy of the prognostics even in the absence of 
significant number of instances of the event in the historical 
data.  When the engineering data is missing, a hidden 
Bayesian Network can be trained to learn the probability of 
failing. The limitation is it will not learn the above event 
unless there are a statistically significant number of 
occurrences of it in the historical data.  

 
Algorithms 
In order to operate a vehicle reliably, it is necessary to be 

aware of the time left before its functionality is impaired.  
Determining Remaining Useful Life (RUL) of a machine or 
a vehicle is one important aspect of Prognosis.  This is 
especially important in mission critical tasks, such as in a 
vehicle attempting to undertake a mission in a battlefield.  
An unanticipated vehicle downtime could lead to 
catastrophic failure, lost lives, or a lost mission.   RUL of a 
vehicle helps quantify how much time is left until the 
vehicle becomes dysfunctional due to failure of one or more 
of its components.  Awareness of RUL ahead of time not 
only helps determine a vehicle’s reliability in undertaking an 
operation, it also helps prepare for maintenance of the 
vehicle, chart future operations based on the remaining life 
of available vehicles, and help plan logistics. 

Given a new component, it is possible to define its 
estimated life in an ideal condition from the manufacturer’s 
specification, e.g., a battery may run out of life out after 100 
days of operation or a gear may break a tooth after traveling 
100 miles.  The estimated life can also be determined 
statistically through measuring a sampling of units to 
determine how long they have historically operated, on 
average.  The units for RUL may be defined in terms of 
time, distance or other unit as is appropriate for the 
component whose RUL is being determined.  This initial 
form of RUL prognosis may be represented in a graph as 
shown in figure 1, where lifetime is defined in terms of time, 
instead of usage or distance.   

In figure 1, Life Credits (LC) are used as a gauge of useful 
remaining life.  Life credits are used up at one single rate 
that has been determined in some way, and in this case is 
represented as a slope, 𝑚𝑥 in the LC curve having the value:  

 

𝑚𝑥 = −
𝐼𝐿𝐶
𝑡𝐸𝑂𝑈𝐿

 

 
where ILC is the initial amount of life credits, say 1000, and 
𝑡𝐸𝑂𝑈𝐿  is the time it has been found that is the expected end 
of life for that component being monitored.  The slope is 
negative since it is meant to decrease the remaining life 
credits over time or usage. 

The graph generally always starts with the maximum LC, 
shown as Initial LC (ILC) after the machinery is installed or 
serviced.  As the machinery is operated, its LCs keep 
decreasing, terminating at the End of Useful Life (EOUL).  
Hence in an RUL plot, the slope of the line is always 
monotonically decreasing with a constant slope.   

The LC(t) line in figure 1 is shown as extending below the 
zero LC axis.  This may be used to show increased urgency 
in the need to replace a certain component, if that component 
has not been replaced or serviced before the predicted EOUL 
as it should have been. 

This simple case of one straight line at a given slope is  
used in situations such as the remaining miles able to be 
driven in a vehicle based upon the miles-per-gallon usage of 
the car and the amount of fuel remaining.  In that case, the 
units of the abscissa of the graph of figure 1 would change 
from a unit of time to now represent miles.   

Prediction of the RUL using the system of figure 1 is such 
that: given the time now, tnow, and the amount of life credits 
remaining, LCnow, the remaining useful life time period, 
TRUL, can be determined as:  

 

𝑇𝑅𝑈𝐿 =
𝐿𝐶𝑛𝑜𝑤
𝑚𝑥

 

 
which is the predicted time remaining until the end of useful 
life. 

 

   
 
Figure 1: RUL plot in the most simplistic case.  LC is Life 
Credits, ILC is Initial Life Credits, TRUL is the Remaining 
useful life in terms of time, and tEOUL is end of useful life. 
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Modifications to this RUL model can likely provide more 
accurate predictions of the future.  These modifications take 
at least three forms: 

 
1. Real-time LC offsets and slope changes 
2. Predicted LC offsets and slope changes 

Real-time LC Offsets and Slope Changes 
Something may happen that causes the remaining LC to 

decrease instantaneously.  For instance, a canary sensor may 
trigger, indicating that the RUL has dropped to a low amount 
or a shock detector could detect that a powerful shock was 
received, such as by driving over a deep pothole.  In the 
canary sensor case, the life credits can be modeled to drop to 
a certain amount, while in the shock detector case, the LC 
drops by a certain amount.  In the case of a shock absorber, 
severe shock impact is a reoccurring discrete event.  A 
circuit breaker may be considered as canary event where the 
circuit breaker may be reset to indicate future trips.  In the 
circuit breaker case, the root cause of the circuit breaker trip 
should be determined and new life credits added to the 
system through maintenance. 

The canary algorithm can be visualized as a binary bit that 
is off until the canary dies.  The death of the canary can be 
modeled as a Dirac delta function, 𝛿(𝑡), which is a single 
event in time, as seen in figure 2a.  Mathematically, this 
function has infinite height and infinitely narrow width, 
integrating to a value of one.  The nomenclature 𝛿(𝑡 − 𝑡0) 
indicates that the Dirac delta function is offset in time so that 
at time 𝑡0, the quantity 𝑡 − 𝑡0 has a value of zero and makes 
the function fire at that instant. 

The USMC Embedded Platform Logistics System (EPLS) 
ground vehicle support apparatus that is used to monitor and 
collect vehicular system/subsystem mission critical data 
from various sensors on a military ground vehicle, represents 
most of the data using events.  These events can be viewed 
as Dirac delta functions.  They indicate that a certain event 
occurred at a certain time.  Perhaps a pump started running.  
Then an event would be sent along the internal vehicle data 
bus, that pump_x started running at time t0, but subsequent 
to that, no more information about pump_x is sent until it 
turns off.  

The canary event can be used to trigger an instantaneous 
drop of the remaining life credit to a low value, indicative of 
the prediction that the component is very near the end of its 
life.  This is shown in figure 2d, where the life credits drops 
immediately all the way down to the Canary Predicted Life 
Level (CPLL), and continues to decline through usage from 
that new level.  The slope of decline after the canary dies can 
also be a different slope, as indicated by the new slope 
callout of 𝑚𝑥,2 instead of 𝑚𝑥,1 in the figure.  Thus, for a 
canary event, 

𝐿𝐶(𝑡) ← 𝐶𝑃𝐿𝐿 
 
and 

𝑚𝑥 ← 𝑚𝑥,2 
 
depending on which of the canary-induced changes to the 
LC update algorithm are being used. 

To process the information about the canary event as just a 
change in slope instead, the event needs to be stretched into 
a step function as seen in figure 2b.  This step function is 
also called the Heaviside function [3], and can be created 
mathematically by integrating the Dirac delta function, 
yielding a function, u(t), that has the following 
characteristics: 

 

𝑢(𝑡) =  �0, 𝑡 < 0
1, 𝑡 ≥ 0

� 
 

The offset, 𝑡 − 𝑡0, makes the function shift in time to fire at 
𝑡0.  Converting the vehicle-monitoring canary event to a step 
function allows its use in the calculation and continuation of 
the new slope of the RUL graph.   

In figure 2c), it can be seen that the slope changes after the 
canary fires.  The initial slope can be represented as 𝑚𝑥,1, 
and the post-canary-firing slope as 𝑚𝑥,2, where it can be 
modeled as:   

𝑚𝑥,2 = 𝑚𝑥,1 + ∆𝑚𝑐𝑎𝑛𝑎𝑟𝑦  
 
Thus the RUL curve attains a continuous added slope of a 
certain amount, and the slope is required to be negative, or 
∆mcanary < 0 . 

Another form of instantaneous change in life credits can 
be produced by the response to a sensed, potentially 
damaging event, such as a shock from driving over a 
pothole.  This produces a life credit offset, which may be 
proportional to the sensor reading for the shock, for instance. 
In a life credit offset, the RUL would be dropped a certain 
amount from where it currently was, as seen in figure 3.  The 
slope of life credit decline may be modeled to change after 
each impact also. 

In reality, during the lifetime of the component, it hardly 
ever operates in one operating condition or regime.  A 
vehicle may have to operate under very low or very high 
temperatures, drive very slowly or very fast (on a variety of 
terrains or situations), hence impacting the RUL of the 
component. Using historical data, it is possible to estimate 
the changing remaining life when operated in different 
operating regimes.  The changing RULs during the 
component’s lifetime may be represented by changing slopes 
on an RUL plot. For example, figure 4 shows of a graph of 
altering RUL over six operating regimes.    
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Figure 2: Information from a canary is translated into a 
modification of the prediction of remaining useful life.  

CPLL is Canary-Predicted Life Level.   
Note: a canary generally only activates once. 

 
 

 
 

Figure 3: A Life Credit Offset is different from the 
canary-based modification in that it just subtracts a bit of 
life, but doesn’t reduce the remaining life to a set amount. 
 
 

 
 
Figure 4: This RUL prognostics plot with six operating 
regimes shows the complete life cycle of the component.  

 
From the historical data the following can be obtained:  
 

a) The regimes in which the vehicle (or component) 
has operated (e.g.,  regime1, regime2, regime3,….)   

b) time period it has been in each regime (e.g., T1, T2, 
T3, …, T6) and  

c) the total life time of the vehicle (or component) 
before it failed.   
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Predicted LC Offsets and Slope Changes 
The system operates in the tnow time.  The future consists of 

a prediction, but knowing the state of the system as 
represented by the remaining Life Credits, and the planned 
operating regimes, and expected system shocks, the RUL 
may be predicted for a given mission plan.  All the 
components have a set of slopes that are appropriate for a set 
of given regimes.  If a mission is known in advance as to the 
expected external environment regimes that will be 
encountered, then these regimes and their durations can be 
presented to the RUL model, and run over time to determine 
when and if components are expected to fail during the 
mission.   Pre-emptive maintenance may be performed ahead 
of the mission, if possible, or mission plans can be changed 
based upon the foreseen capabilities of the fleet of vehicles 
available for the commander’s use. 

 
Rolling up RUL to entire system 
The RUL of an entire system, such as a vehicle, is based 

on the RUL of its components.  Failure of one component 
may be sufficient to fail the system.  Since the interactions 
and interdependencies of the components may not be very 
obvious, it is helpful to use statistical methods, such as 
Bayesian networks, to provide reasonable estimates of RUL 
based on the data available [4][5].    

As the individual RULs are rolled up to a system level, an 
accurate picture of the readiness of a vehicle or a fleet of 
vehicles can be obtained.  This picture may then be used to 
plan for an upcoming mission. 

 
OFF-PLATFORM ANALYSIS 

The prognostics analysis does not have to be performed 
only on the platform of interest, but may be performed at a 
computation center that is located off-platform.  A 
prognostics analysis center may be located anywhere that 
may be communicated to by the vehicle, directly or 
indirectly.  This center produces analysis of the vehicle 
health on an on-going basis.  Usage rates for components 
will be needed to be sent back to the off-platform site to 
allow mission planning based on remaining life values. 
Another type of off-platform analysis center creates the 
algorithms that detect the failure precursors and create new 
memories for the neural networks and new LC usage slopes. 

The Off-System CBM+ components, as seen in figure 5, 
also provide a data warehouse, a data mining and analysis 
capability, and a capability to update the condition 
monitoring algorithms and advanced prognostic health 
indicators that will run on the On-System hardware.  The 
term CBM+ indicates a more enterprise-level CBM system, 
with on-platform, at-platform, and off-platform components. 
The CBM+ off-platform communications could also be 
linked to a National-level Strategic Data warehouse [6]. 

Specific application tools such as Enterprise Logistics 
IT, prognostic algorithms, data mining and the like would 
comprise the Off-Platform or Off-System Architecture layer.  
Data mining and Business Intelligence Tools would identify 
trends, and improve and refine Maintenance, Diagnostic, and 
Prognostic capabilities. 

Processing at the Off-system level is intended to provide 
a processing and data storage capability. Data is moved from 
the On-system components to the Off system environment 
using established data communication networks Data 
compression algorithms would be used to decrease the 
network loading required to move large data sets.   

Normal operating equipment will not need to have data 
sent back to the Off-System location, but when anomalies 
are detected, or a piece of equipment is determined to be 
failing but the condition was not indicated, then the set of 
data recorded for that piece of equipment in its degraded or 
failing state would be sent to the Off-System site for analysis 
to develop an algorithm that would detect the failure in the 
future.  This updated algorithm, perhaps consisting of neural 
network parameters, slopes, or other controls for the On-
System hardware, would then be distributed to all On-
System monitors for the affected equipment model.   

The Off-System architecture requires the use of carefully 
designed database schemas in order to coordinate large 
datasets of recorded machinery operation, enabling the 
precise application of the analysis and condition indication 
algorithms. 

 

 
Figure 5: Off-System CBM+ Architecture. 

 
POTENTIAL USES OF ANALYSIS 

Now that technology is available for creating intelligent 
platforms, collecting system data, analyzing and maintaining 
the data one simple question remains “so what?”  How does 
access to this information affect material changes in the 
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operation of a specific platform?  There are three areas 
where significant impacts can occur: at the operator, the fleet 
manager, and potentially the original equipment 
manufacturer.   

A question an operator may ask himself may be: “If I keep 
driving my vehicle will I be able to complete my mission?”  
The system discussed above will allow for real time alerts to 
be presented to the vehicle driver or commander in real time.  
As canaries “die” and LC’s (the CPLL) are impacted, 
messages can be sent to the operator and presented as an 
alert.  Unlike current oil RUL indication this canary type 
prognostication tool provides a better understanding of the 
current vehicle/component health based on the inputs 
discussed previously.   

Operational planners, or fleet managers also require the 
information created through the use of this system.  Having a 
CBM+ enabled architecture allows for the collection of data 
from multiple platforms: for example, a Battalion or 
Brigade’s worth of tactical wheeled vehicles.  The S3, or 
operations officer, can identify vehicles which are more fit 
or in a better condition to meet upcoming mission 
requirements, based on the inputs obtained from individual 
platforms within his span of control.  Similarly, logisticians 
can begin to utilize this data for understanding when or if to 
order certain repair parts.  By doing this logisticians can 
provide the right repair parts to the field, without having to 
pre-position parts based on demand data from previous 
deployments. 

Finally, there is an engineering/OEM aspect to this 
intelligent system as well.  Over time, failure modes can be 
isolated, as well as the associated inputs leading up to the 
component failure. This will allow for the study of the 

reasons behind the failures and provide data as to the cause, 
be it engineering design, unintended use of the system, or  
operator training, for instance. All these questions affect 
overall performance and LC of the system. 
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